Wowstick.ru

Строительный журнал
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Цементный мост установка расчет

Характеристики бетона для мостов

Одной из недавно созданных марок бетона является мостовой бетон. Он используется при строительстве сложных конструкций, которые постоянно подвержены сильному механическому или климатическому воздействию. В состав этого материала входят композиционные смеси. В зависимости от цели применения компонентами раствора являются цемент, песок, гранитный щебень и химические добавки. А теперь рассмотрим особенности мостового бетона.

Монтаж пролетных строений

Существуют различные виды монтажа пролетных строений: навесной и полунавесной монтаж пролетных строений, сборка пролетного строения на стапеле и далее перевоз его на плавучих средствах или при помощи крана (если на суше), сборка пролетного строения на берегу с продольной надвижкой его в пролет.

Технологию монтажа пролетных строений проектировщики закладывают, учитывая тип конструкции, условия для ее монтажа и наличие техники и оборудования у строителей.

Об этом мы подробно говорили в статье: «Монтаж металлоконструкций».

Сооружение мостов включает в себя следующие этапы:

  • освоение площадок;
  • возведение опор;
  • монтаж пролетных строений;
  • ликвидация строительной площадки;
  • испытание моста и др.

Для каждого из имеющихся видов мостов, существует своя технология строительства, которая наиболее лучше подходит для возведения конкретного моста.

Ставится ли зубной мост на импланты

Фиксирование мостовидного протеза на импланты получается выгоднее, чем классическая мостовидная конструкция с опорой на своих зубах.

Обычный мост подразумевает установку на два опорных зуба, которые предварительно обтачиваются, чтобы после на них надеть коронку. Обточка своих зубов и увеличение нагрузки приводит со временем к их скорому изнашиванию или удалению. Дефект в ряду становится больше, потребуется обточить новые зубы, чтобы использовать их в качестве опоры. За счет моста восстанавливают от одной до четырех утраченных единиц. Реконструкция дефектов в конце зубного ряда невозможна, поскольку отсутствует опора для одной из сторон конструкции. А устанавливать мост одновременно на свои зубы и импланты нельзя.

Фиксация мостовидного протеза на имплантах решает данные проблемы. Конструкцию устанавливают на титановые корни, так соседние зубы не нуждаются в препарировании. Импланты могут устанавливаться в любых сегментах ряда, что также позволяет устранить концевые дефекты (отсутствие последних зубов). Жевательная нагрузка распределяется равномерно, а также правильно передается на костную ткань, что замедляет ее истончение. Полноценно восстанавливается эстетика улыбки, продлевается срок службы собственных зубов. Мост на имплантах функционирует до 15 лет, а при правильном уходе за конструкцией с соблюдением всех правил и того дольше, при этом имплантаты будут служить всю жизнь.

Читайте так же:
Смеситель лабораторный для цемента

Установка зубного моста.

Чтобы установить зубной мост потребуется около двух дней, поскольку процесс фиксации конструкции требует выполнения нескольких последовательных этапов. Первый день установки включает обточку опорных зубов пациента. Как правило, перед этим врач назначает проведение рентгена челюсти. Зубы препарируют и шлифуют, затем создается соединительный элемент, связывающий защелки и протез для обеспечения крепления. Далее создается слепок, по которому будет изготовлен индивидуальный зубной мост. В период изготовления моста пациенту фиксируют временный протез. Второй день установки зубного моста включает снятие временного протеза и фиксацию постоянной конструкции. Далее проводится сверка по цветовой гамме.

Следует подчеркнуть, что для каждого вида протеза необходимо выполнение определенных условий, без которых протезирование не может быть эффективно произведено. Для установки мостовидного протеза имеются определенные противопоказания, среди которых можно выделить бруксизм, неправильный прикус, отсутствие трех крайних зубов, повышенная стираемость зубов, заболевания мягких тканей, пародонтит, пародонтоз. Исходя из текущего состояния ротовой полости врач определяет возможность установки мостовидного протеза или подбирает альтернативные методы восстановления утраченных зубов.

Описанные методы получили распространение при формировании бетонных конструкций на значительной глубине, вплоть до 50 м. А можно ли заливать бетон с помощью более простых и менее дорогостоящих способов, если глубина не превышает 2 м, а сами работы направлены на ремонт уже существующих монолитных сооружений? Действительно, для восстановления целостности поврежденной конструкции, выравнивания дна или заливки не ответственного объекта существует метод укладки бетона в мешках.

Мешки, заполненные свежим раствором и зашитые, укладывают на основание или заделывают в крупные каверны поврежденных конструкций. Мешковина пропускает воду, но предохраняет бетон от растекания. При бетонировании большого пространства мешки сшиваются между собой и армируются.

Еще один способ подводного бетонирования на глубине до 1,5-2 м — это метод островка или втрамбовывания. Способ требует высокой скорости подачи цементного раствора и применения вибратора для втрамбовывания очередной порции бетона, однако, позволяет производить бетонирование не горизонтальных поверхностей (например, берегов). Кроме того, не требуется армирование и нет высоких требований к классу бетона.

Читайте так же:
Для приготовления цементного раствора необходимо

Осуществляя заливку бетона в воду, необходимо помнить, что это технологически сложный процесс, требующий тщательной подготовки, составления проектной документации и соблюдения строительных нормативов. Точное следование технологии укладки позволит избежать аварийных ситуаций как в процессе подводного бетонирования, так и при последующей эксплуатации объектов.

10.2. Расчет нагрузок на основание и фундамент резервуара

10.2.1. Реактивные усилия, передаваемые с корпуса на основание и фундамент резервуара, определяются в зависимости от конструктивных, технологических, климатических, сейсмических нагрузок и их сочетаний, приведенных в таблице П.4.6 Приложения П.4.

10.2.2. В состав нагрузок, передаваемых по контуру стенки резервуара на его фундамент, входят нагрузки двух типов.

Нагрузки первого типа, обеспечивающие осесимметричное распределение усилий по контуру стенки, включают:

— вес резервуара с учетом оборудования и теплоизоляции, за вычетом центральной части днища;

— избыточное давление и разрежение в газовом пространстве резервуара.

Нагрузка второго типа возникает от ветрового воздействия на корпус резервуара и создает кососимметричное распределение усилий по контуру стенки.

Ветровая нагрузка вызывает появление опрокидывающего момента, вычисляемого относительно точки, расположенной на оси симметрии опорного контура стенки с подветренной стороны резервуара. Нагрузки первого типа создают момент, препятствующий опрокидыванию резервуара.

10.2.3. Перечень необходимых расчетов включает:

— определение нагрузок на центральную часть днища в условиях эксплуатации, гидро- пневмоиспытаний и при сейсмическом воздействии;

— расчет максимальных и минимальных нагрузок по контуру стенки в условиях эксплуатации и при сейсмическом воздействии;

— проверку на отрыв окраек днища от фундамента при действии внутреннего избыточного давления на пустой резервуар;

— проверку на опрокидывание пустого резервуара путем сравнения опрокидывающего момента и момента от удерживающих сил;

— проверку резервуара с продуктом на опрокидывание в условиях землетрясения;

— расчет анкеров, если происходит отрыв окраек днища от фундамента при действии внутреннего давления на пустой резервуар;

Читайте так же:
Расход цемента бетон в25

— расчет анкеров, если устойчивость пустого резервуара от опрокидывания не обеспечена;

— расчет анкеров, если устойчивость резервуара с продуктом от опрокидывания при землетрясении не обеспечена.

Расчет нагрузок на основание и фундамент резервуара при землетрясении приведен в п. 9.6.6.

10.2.4. Опрокидывающий момент, действующий на резервуар в результате ветрового воздействия, вычисляется по формуле:

10.2.5. Расчетная погонная нагрузка по контуру стенки характеризуется максимальным и минимальным значениями, соответствующими диаметрально противоположным участкам фундамента (рис. 10.1). Максимальная и минимальная нагрузки определяются соответственно, как сумма и разность максимальных нагрузок первого и второго типа (с учетом знаков). Расчетная нагрузка по контуру стенки в основании резервуара определяется по формулам:

Рис. 10.1. Нагрузки на фундамент, передаваемые по контуру стенки резервуара

10.2.6. Расчетная вертикальная нагрузка на фундамент резервуара, соответствующая 1-му расчетному сочетанию нагрузок (таблица П. 4.6 Приложения П.4), составляет:

10.2.7. Если теплоизоляция, или вакуум, или снеговая нагрузка отсутствуют, формула 10.2.6 должна быть приведена в соответствие с полученным сочетанием нагрузок.

10.2.8. Коэффициент fs назначается согласно указаниям п. 9.2.3.1.7.

10.2.9. Нагрузки на центральную часть днища определяются исходя из величины внутреннего избыточного давления, максимального проектного уровня налива и плотности продукта (эксплуатация) или воды (гидро- пневмоиспытания). Эту нагрузку следует определять по формулам:

pf = γn[0,001g(ρH + ρstbc) + 1,2p],

Pfg = γn[0,001g(ρgH0g + ρstbc) + 1,25p].

10.2.10. Требования по установке анкеров

10.2.10.1. Анкеровка корпуса резервуара требуется если:

— происходит отрыв окраек днища от фундамента при действии внутреннего избыточного давления;

— момент от сил, вызванных ветровым воздействием, превышает момент от вертикальных удерживающих сил, действующих на пустой резервуар.

10.2.10.2. В случаях, указанных в п. 10.2.10.1, стенка резервуара прикрепляется к фундаменту анкерными устройствами, шаг установки и размеры которых определяются расчетом.

10.2.10.3. Требуется установка анкеров, если выполняются следующие неравенства, соответствующие условиям п. 10.2.10.1:

Qmin 3 и не менее 1,0 для резервуаров объемом свыше 3000 м 3 . Толщина железобетонного кольца принимается не менее 0,3 м. При строительстве резервуаров в сейсмических районах наличие кольцевого железобетонного фундамента является обязательным. Ширина кольца должна быть не менее 1.5 м, а толщина не менее 0,4 м.

Читайте так же:
Смесь для изготовления бетонного кирпича

Рис. 10.4. Сплошная железобетонная плита

10.3.4. Фундамент в виде сплошной железобетонной плиты рекомендуется для резервуаров диаметром не более 15 м на немерзлых грунтах, для всех резервуаров на мерзлых грунтах, а также для всех резервуаров при хранении в них этилированных бензинов, реактивного топлива или иных ядовитых продуктов. Для обнаружения возможных протечек продукта железобетонная плита должна иметь уклон не менее 1 % от центра к периметру, а также радиально расположенные дренажные канавки.

Примеры расчета расхода арматуры

Как уже было сказано выше, количество стержней требуемых для армирования зависит от типа конструкции, ниже приведены примеры как проводить расчёты для них.

Ленточный фундамент

Рассчитаем количество арматуры на 1 м 3 бетона, необходимое для армирования ленточного фундамента – высота 1,2 м, ширина 0,4 м. Для продольного армирования используем стальные стержни диаметром 12 мм – 14 шт., для поперечного хомуты из прутов 8 мм – шаг 30 см, а также соединительные стержни с шагом 60 см.

Порядок выполнения расчета расхода по схеме приведенной выше:

  1. Считаем площадь сечения бетона: 120*40=4800 см 2 .
  2. Площадь сечения продольной арматуры: 14*1,131=15,834 см 2 .
  3. Находим процент содержания продольных стержней в бетоне: 15,834/4800*100=0,329875%, округляем 0,33 %.
  4. С помощью таблицы расхода переводим проценты в кг, для этого: 0,33/0,1*7,85=25,905 кг.
  5. Для изготовления одного хомута необходимо 3 м прута толщиной 8 мм (вес 1 метра 0,395 кг), всего на 1 м 3 фундамента уйдет 7 хомутов, а это: 7*0,395= 2,765 кг.
  6. Также понадобятся 4 соединительных стержня длиной 50 см, и диаметром 8мм, всего: 4*0,5*0,395=0,79 кг.
  7. Получаем на 1 м 3 бетона ленточного фундамента при таком армировании, всего уйдет: 25,905+2,765+0,79=29,46 кг арматуры.

Так, рассчитав требуемый объем бетона и количество стержней на 1 м 3 , можно узнать, сколько тонн стали необходимо для армирования всего фундамента. Но также следует учесть количество и размер нахлестов арматуры, и подсчитать количество дополнительных элементов по усилению углов и других элементов.

Монолитная плита перекрытия

Рассчитаем на примере армирования плиты перекрытия толщиной 20 см, так как это самый распространённый размер. Шаг армирующей сетки 200 на 200 мм диаметр стержня 10 мм, усиления 14 мм – шаг 200 мм.

Читайте так же:
Наливные полы цементные церезит

Порядок расчета расхода на 1 м 3 перекрытия по схеме:

  1. На 1 м 2 плиты уходит 20 м арматуры для вязки верхнего и нижнего слоя сетки.
  2. 1 м 3 бетона занимает площадь 5 м 2 , следовательно: 5*20=100 метров – расход стержня для вязки сетки.
  3. Вес метра арматуры 10 мм – 0,617 кг. Получаем, 100*0,617=61,7 кг, расход продольных стержней для устройства сетки.
  4. На дополнительные усиления, понадобится около 50 метров стержня диаметром 14 мм, всего: 50*1,21=60,5 кг.
  5. Дополнительные элементы плиты (пространственные каркасы, «П» образные элементы), необходимо около 20 м стальных прутов 10 мм, всего: 20*0,617=12,34 кг.
  6. Всего расход: 61,7+60,5+12,34= 134,54 кг арматуры на 1 м 3 бетона монолитной плиты перекрытия.

Таким образом, можно произвести расчеты для перекрытий различных конструкций. Но при этом следует ещё учесть расход на стыки, усиления в зоне продавливания, и другие дополнительные элементы, в зависимости от формы и особенностей строения.

Железобетонная колонна

Рассчитаем расход для армирования колонны 300 на 300 мм. Продольная арматура класса А500С диаметром 16 мм – 4 шт, поперечная А240 – 8 мм. Порядок расчета:

  1. Считаем размер площади сечения колонны: 30*30=900 см 2 .
  2. Площадь сечения арматуры равна: 4*2,01=8,04 см 2 .
  3. Рассчитываем процент содержания продольных прутов в бетоне: 8,04/900*100= 0,893 %.
  4. Переводим проценты в кг, для этого: 0,893/0,1*7,85= 70,1 кг.
  5. При таком сечении 1 м 3 бетона в длину это 11 метров колонны.
  6. На 11 метр колонны при шаге 25 см уйдет около 45 хомутов.
  7. На 1 хомут уходит 1 метр стержня диаметром 8 мм весом 0,395 кг, значит всего на куб: 45*0,395=17,775 кг.
  8. Всего на куб бетона колонны уйдет, 70,1+17,775=87,875 кг арматуры.

Все расчеты по расходу стали являются теоретическими, к каждому случаю следует подходить индивидуально, учитывать все действующие нагрузки на конструкцию, так как от этого зависит минимальный процент армирования, а от него, то, сколько арматуры уйдет на 1 м 3 бетона. Если остались вопросы, задавайте в комментариях, будем рады помочь.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector